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Radiation pressure and the Thomas-Fermi equation of state 

Richard M More 
Department of Physics, University of Pittsburgh, Pittsburgh, Pa. 15260, USA 

Received 23 June 1976 

Abstract. This paper studies the interaction of radiation with matter in a high-temperature 
environment. The radiation pressure is calculated carefully, including the coupling to the 
high-density electron plasma. The calculation yields a correction to the expression for 
radiation pressure given by Inman. The results are applied to investigate whether radiation 
pressure can produce significant alterations of the electron density in atoms. 

1. Introduction 

This paper studies the interaction of radiation with matter in a high-temperature 
environment such as a stellar interior or the core of a highly compressed laser-fusion 
pellet target. According to a well known rule for the equation of state of hot dense 
matter (Zel'dovich and Raizer 1966, Cox and Giuli 1968, Bond et a1 1965), the total 
pressure is computed as the sum of independent contributions corresponding to 
radiation, electrons and ions ( p  =pr+pe+pi). Obviously, this rule is only an approxi- 
mate treatment of a complicated situation, and it is desirable to determine the limits of 
the additive rule or corrections to it. The result obtained below is a correction to the 
additive rule which occurs because of the interaction of radiation with the electron gas. 

The radiation pressure is not simply the black-body pressure (4a/3cT'), because at 
high densities the electron plasma modifies the photon group velocity and density of 
states. The radiation pressure is carefully calculated in § 2 (including the plasma effect); 
because of a subtle point, our result for the radiation pressure differs from that given by 
Inman (1965). 

At high temperatures the radiation pressure may be larger than the electron or ion 
pressures and some fraction of this radiation pressure will act upon the electron 
distribution. The radiation pressure will tend to collapse or compress the electron 
distribution, because part of the radiation spectrum is excluded from the dense electron 
gas in the atomic core. This effect is studied in § 3 and shown to be very small at 
temperatures below lo9 K. 

The electron pressure is conveniently calculated by Thomas-Fermi theory for atoms 
that are not totally ionized (Latter 1955, Feynman eta1 1949). The ion pressure may be 
approximately determined from ideal-gas formulae or more accurately from numerical 
calculations for the one-component plasma (Brush et a1 1966, Hansen 1973). An 
approximate treatment of the coupling of electron and ion contributions was recently 
given by More and Skupsky (1976). 

This paper concentrates on the interaction of radiation with electrods in thermal 
equilibrium. One effect of radiation is to promote electrons to excited states but this is 
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already included in the finite-temperature Thomas-Fermi theory. The mechanism 
considered in $ 3 is an additional effect in which radiation alters the wavefunctions of 
electron states and thereby alters the electron charge density. Alternately phrased, 
some fraction of the radiation pressure is transmitted to the electron distribution and 
tends to compress the atom. 

The calculation given below is an approximate treatment which extends the 
development of Thomas-Fermi theory from the viewpoint of the inhomogeneous 
electron gas (Kohn and Hohenberg 1965). A free-energy function is constructed for 
radiation in the presence of a uniform electron gas and this is adapted to the atomic 
structure problem via the local density approximation. The approximation is probably 
not highly accurate (no more so than the usual Thomas-Fermi approximation), but it is 
sufficient to demonstrate the (small) magnitude of the effects. 

2. Radiation pressure (uniform gas) 

This section calculates the pressure of black-body radiation in the presence of an 
electron plasma having constant (uniform) number density ne. The radiation free 
energy .!Fr of equation (1) agrees with an expression given by Inman (1965), but the 
formula for the radiation pressure pr does not agree. 

For transverse plasma waves with frequency w = w ( k )  and zero chemical potential, 
the density of Helmholtz free energy is (Landau and Lifshitz 1966): 

where k is the wavevector and k, is the Boltzmann constant. The factor 2 prefixing 
the integral corresponds to the sum over photon polarizations transverse to the 
wavevector. 

The dispersion relation for transverse plasma waves is: 

w ( k )  = (ug+c2k2)1/2 (2) 

where the plasma frequency wp is determined by the electron number density ne 
according to: 

wp = ( 4 1 r n , e ~ / m , ) ' / ~ .  

The free-energy density is evaluated by inserting (2) into (1) and integrating by parts. 
The result is then: 

where xo  = Awp/kBT and the function B ~ / ~ ( x o )  is defined by 

For the limiting case of low electron density, xo+ 0 and B3/JO) = .rr4/15. In this 
case, equation (3) is a standard result for black-body radiation (Landau and Lifshitz 
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1966). Asxo rises, B3/2(~0) decreases from the initial value .rr4/15; series expansions for 
the free energy are given by Inman (1965). Table 1 gives numerical values for the 
functions B3/2 and Bl12 (defined below). 

Table 1. 

0 
0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 
5 . 5  
6.0 

6,4939 
6.0336 
5.0894 
4.0514 
3.0997 
2.3029 
1.6724 
1.1924 
0.8375 
0.5808 
0.3986 
0.2710 
0.1828 

1.6447 
1.0563 
0.6895 
0.4503 
0,2932 
0.1900 
0.1225 
0.0786 
0.0502 
0.0320 
0.0203 
0.0128 
0.0081 

0 
0.0657 
0.2032 
0.3751 
0.5675 
0.7735 
0.9892 
1.2119 
1.4400 
1.6720 
1.9072 
2.1447 
2.3842 

Inman computes the total free energy of radiation F, as the volume integral of the 
density Sr, so that for the uniform system one has F,= VSr. He  then evidently 
computes the pressure by differentiation with respect to V, finding the result pr = -Sr 
for the radiation pressure. 

The work of the next section leads to a different final expression for the radiation 
pressure which is already suggested at this stage by the observation that Inman has 
performed the differentiation with respect to volume at constant electron density 
ne = Ne/ V. However the radiation cannot be compressed independently of matter. If 
instead the electron density is allowed to change with volume V (keeping Ne constant), 
the pressure becomes: 

or 

where 

is also given in table 1. 
For large values of xo,  the radiation pressure of equation (5) differs significantly from 

the formula given by Inman and so it appears worthwhile to be certain that ( 5 )  is correct. 
A very clear justification for equation (5) is provided by the calculations of the next 
section. 
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3. Modified Thomas-Fermi theory 

The radiation free energy of equation (3) is now combined with the electronic free 
energy to generate a modified version of the Thomas-Fermi theory. The calculation 
supplies an additional justification for the radiation pressure formula of equation ( 5 )  
and also indicates the extent to which radiation pressure is able to alter the charge 
distribution within an atom. 

The Helmholtz free energy per electron of a uniform non-interacting electron gas at 
density n will be denotedf(n, r). The explicit form of f (n ,  r )  is a well known expression 
involving Fermi-Dirac integrals and is quoted below. 

As is conventional in Thomas-Fermi theories, space is divided into spherical cells 
surrounding the nuclei (Latter 1955, Feynman et a1 1949, Brush et a1 1966). The total 
free energy of one ion sphere containing a positive nuclear charge +Ze and an electron 
density n ( r )  is approximately given by: 

(7) 
The first three terms occur in the standard finite-temperature Thomas-Fermi theory 
and the last term repisesents the analogous treatment of radiation. The first term is the 
free energy associated with free-electron kinetic energy (explicit form given below). 
The second and third terms are the electron-electron interaction, neglecting exchange 
and correlation, and the electron-nucleus interaction. The local density approximation 
is used in the first and fourth terms; the non-uniform gas is treated by adding 
contributions for the uniform gas evaluated at the local density n(r). 

The local density approximation would be accurate if the density gradients were 
small, and the approximation is being applied outside its formal domain of validity in 
any application to atomic structure. Nevertheless the Thomas-Fermi theory gives a 
useful account of the general properties of high-density matter and it appears reason- 
able to use this approximation to estimate the radiation effects. If the results corres- 
ponded to a larger effect, it would be interesting to attempt a more accurate calculation. 

The free energy fln(r)] is defined for an arbitrary electron density but should take 
on a minimum value for the correct density. Variations of n(r) are subject to the 
constraint 

I n ( r ) d 3 r = Z  

where this integral also runs over the ion sphere. The constraint is enforced by 
introducing a Lagrange multipler ,U which is the electron chemical potential. The 
condition that F[n] be a minimum yields the equation: 

af 
an 

- f + n-- e V(r) + ger(r) ,U=-- 
SF 

(r) 

where V(r) is the total electrostatic potential determined by 
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and pe,(r) is the contribution of radiation to the electron chemical potential, determined 
bv: 

with xo(r)  = hop(r ) /kBT and op(r) = ( 4 ~ n ( r ) e ~ / m , ) ' / ~ .  
The electron density is determined by the requirement that the left-hand side of 

equation (8) be independent of position although the individual terms on the right are 
not. If the radiation contribution per(r) is omitted, then equation (6)  is equivalent to the 
usual Thomas-Fermi theory. The term per therefore governs the alteration of the 
electron distribution by radiation. 

This effect may be interpreted as follows: radiation energy of any specified fre- 
quency w is excluded from the central parts of the atom where the electron density is so 
high that the local plasma frequency wp(r)  exceeds W .  In this way, a fraction of the 
radiation pressure is transmitted to the electron distribution. 

The electron chemical potential p is spatially constant across the atomic volume as a 
condition of equilibrium and therefore V p  = 0 or 

We will multiply this equation by n(r)  and then use equation (9) to replace the term 
nVp., by -Vgr+V(nper) .  The result may then be rewritten in the form of a familiar 
condition for equilibrium: 

VPtOt = -en(r)E(r) (10) 
where the electric field is E(r) = -V V(r)  and the total pressure ptot is 

Equation (1 1) is the only expression for the total pressure compatible with equation 
(lo), up to an uninteresting constant. The first term in equation (11) is the usual 
expression for the electron pressure in the Thomas-Fermi theory, as shown below. The 
second term -.Fr is the Inman expression for the radiation pressure, and the third term 
is precisely the correction found in equation (5 ) .  This last term is a modification to the 
total pressure associated with the interaction of radiation and electrons. 

In order to verify that the first term of equation (1 1) is the usual electron pressure, it 
is useful to recall the well known form of f (n ,  T),  the free energy per electron of a 
uniform electron gas. The equation gives f in terms of an auxiliary quantity ~ ( r ) :  

where 7 is determined from the local density n by: 

and the Fermi-Dirac integrals F1,,, F3/2 are defined by 
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Using dF'3/2/d~ = -$Fl/2, one can readily show that 

and this is the usual Thomas-Fermi formula for the electron pressure. 
There is still another derivation of the total pressure formula of equation (1 l), again 

differentiating the free energy with respect to volume but now performing the calcula- 
tion within the ion-sphere picture. When a substance changes volume, each ion sphere 
changes volume by dfi. The neutrality condition is true at both volumes no and Ro + dR, 
which yields: 

J Sn(r)  d3r = -n(Ro) df i=  -n(Ro)47iRg d R o  
a0 

where Sn ( r )  is the change in n ( r )  produced by the small volume change and n(Ro) is the 
number density at the ion-sphere boundary. Using equations (6) and (7), one can easily 
establish 

SF = -pro, dfi 

where again ptot is determined by equation ( l l ) ,  evaluated at r = Ro. Thus ptot(Ro) 
determines the bulk pressure of the substance. 

The changes in electron density induced by the interaction with radiation are 
obviously very small. The correction to the pressure may be written 

2 e 2  k 
7i hc me 

Sp = np,, = nkBT- - 4 B 1 , 2 ( n o )  

where e2 /hc  is 1/137.037, BlI2  is of order unity (see table 1) and since normally 
kBT<< mc2, this term is a very small correction to the electron gas pressure which is 
greater than or equal to nkBT (The term Sp  is not necessarily small with respect to the 
radiation pressure - % obtained by Inman.) At higher temperatures, where the effect 
would be more appreciable, a relativistic treatment would be required. 

The smallness of this alteration of the electron density distribution therefore 
provides a verification of the additive pressure rule. 
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